On the Practical Interpretability of Cross-Lagged Panel Models: Rethinking a Developmental Workhorse
Corresponding Author
Daniel Berry
University of Minnesota
Correspondence concerning this article should be addressed to Daniel Berry, Institute of Child Development University of Minnesota, Twin Cities 51 E River Road Minneapolis, MN 55455. Electronic mail may be sent to [email protected].Search for more papers by this authorCorresponding Author
Daniel Berry
University of Minnesota
Correspondence concerning this article should be addressed to Daniel Berry, Institute of Child Development University of Minnesota, Twin Cities 51 E River Road Minneapolis, MN 55455. Electronic mail may be sent to [email protected].Search for more papers by this authorAbstract
Reciprocal feedback processes between experience and development are central to contemporary developmental theory. Autoregressive cross-lagged panel (ARCL) models represent a common analytic approach intended to test such dynamics. The authors demonstrate that—despite the ARCL model's intuitive appeal—it typically (a) fails to align with the theoretical processes that it is intended to test and (b) yields estimates that are difficult to interpret meaningfully. Specifically, using a Monte Carlo simulation and two empirical examples concerning the reciprocal relation between spanking and child aggression, it is shown that the cross-lagged estimates derived from the ARCL model reflect a weighted—and typically uninterpretable—amalgam of between- and within-person associations. The authors highlight one readily implemented respecification that better addresses these multiple levels of inference.
Supporting Information
Filename | Description |
---|---|
cdev12660-sup-0001-Supinfo.docxWord document, 230.7 KB |
Appendix S1. Recovering the Autoregressive Cross-Lagged Panel (ARCL) “Convergence Effect” Estimates From the Autoregressive Latent Trajectory Model With Structured Residuals (ALT-SR) Disaggregated Estimates. Appendix S2. Example 3: Fragile Families and Child Well-Being Study. Appendix S3. Data and Exemplar Mplus Syntax for the Main Empirical Examples. Appendix S4. Population Parameters and Mplus Syntax for Monte Carlo Simulations. Appendix S5. “Back of the Envelope” Monte Carlo Power Curves for a Simple Random Intercepts Model With a Single Time-Varying Covariate (X). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Allison, P. D. (2009). Fixed effects regression models (Vol. 160). London, UK: Sage.
10.4135/9781412993869 Google Scholar
- Bellemare, C., Bissonnette, L., & Kröger, S. (2014). Statistical power of within and between-subjects designs in economic experiments. Working Paper #8583. Bonn, Germany: IZA.
- Boker, S. M., & Laurenceau, J. P. (2007). Coupled dynamics and mutually adaptive context. In T. D. Little, J. A. Boivard, & N. A. Card (Eds.), Modeling contextual effects in longitudinal studies (pp. 299–324. Mahwah, NJ: Erlbaum.
- Bolger, N., & Laurenceau, J.-P. (2013). Intensive longitudinal methods: An introduction to diary and experience sampling research. New York, NY: Guilford.
- Bollen, K. A., & Brand, J. E. (2010). A general panel model with random and fixed effects: A structural equations approach. Social Forces, 89, 1–34. doi:10.1353/sof.2010.0072
- Bollen, K. A., & Curran, P. J. (2005). Latent curve models: A structural equation perspective (Vol. 467). Hoboken, NJ: Wiley.
10.1002/0471746096 Google Scholar
- Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models: Applications and data analysis methods. London, UK: Sage.
- Campbell, D. T. (1963). From description to experimentation: Interpreting trends as quasi-experiments. In C. W. Harris (Ed.), Problems in measuring change (pp. 212–242). Madison, WI: University of Wisconsin Press.
- Chou, C. P., Bentler, P. M., & Pentz, M. A. (1998). Comparisons of two statistical approaches to study growth curves: The multilevel model and the latent curve analysis. Structural Equation Modeling: A Multidisciplinary Journal, 5, 247–266. doi:http://dx.doi.org/10.1080/10705519809540104
- Cohen, J. (1977). Statistical power analysis for the behavioral sciences. New York, NY: Academic Press.
10.1525/ae.2004.31.4.475 Google Scholar
- Crick, N. R., & Dodge, K. A. (1994). A review and reformulation of social information-processing mechanisms in children's social adjustment. Psychological Bulletin, 115, 74. doi:10.1037/0033-2909.115.1.74
- Cronbach, L., & Webb, N. (1975). Between-class and within-class effects in a reported aptitude X treatment interaction: Reanalysis of a study by G. L. Anderson. Journal of Educational Psychology, 67, 717–724. doi:10.1037/0022-0663.67.6.717
- Curran, P. J., & Bauer, D. J. (2011). The disaggregation of within-person and between-person effects in longitudinal models of change. Annual Review of Psychology, 62, 583–619. doi:10.1146/annurev.psych.093008.100356
- Curran, P. J., Howard, A. L., Bainter, S. A., Lane, S. T., & McGinley, J. S. (2014). The separation of between-person and within-person components of individual change over time: A latent curve model with structured residuals. Journal of Consulting and Clinical Psychology, 82, 8–94. doi:10.1037/a0035297
- Curran, P. J., Lee, T. H., Howard, A. L., Lane, S. T., & MacCallum, R. C. (2012). Disaggregating within-person and between-person effects in multilevel and structural equation growth models. In J. Harring & G. Hancock (Eds.), Advances in longitudinal methods in the social and behavioral sciences (pp. 217–253). Charlotte, NC: Information Age.
- Duncan, O. D. (1969). Some linear models for two-wave, two-variable panel analysis. Psychological Bulletin, 72, 177. doi:http://dx.doi.org/10.1037/h0027876
- Firebaugh, G. (1978). A rule for inferring individual-level relationships from aggregate data. American Sociological Review, 43, 557–572. Retrieved from http://www.jstor.org/stable/2094779
- Gershoff, E. T. (2013). Spanking and child development: We know enough now to stop hitting our children. Child Development Perspectives, 7, 133–137. doi:10.1111/cdep.12038
- Gershoff, E. T., Lansford, J. E., Sexton, H. R., Davis-Kean, P., & Sameroff, A. J. (2012). Longitudinal links between spanking and children's externalizing behaviors in a national sample of White, Black, Hispanic, and Asian American families. Child Development, 83, 838–843. doi:10.1111/j.1467-8624.2011.01732.x
- Goodman, R. (2001). Psychometric properties of the strengths and difficulties questionnaire. Journal of the American Academy of Child Adolescent Psychiatry, 40, 1337–1345. doi:10.1097/00004583-200111000-00015
- Grimm, K. J. (2007). Multivariate longitudinal methods for studying developmental relationships between depression and academic achievement. International Journal of Behavioral Development, 31, 328–339. doi:10.1177/0165025407077754
- Gromoske, A. N., & Maguire-Jack, K. (2012). Transactional and cascading relations between early spanking and children's social-emotional development. Journal of Marriage and Family, 74, 1054–1068. doi:10.1111/j.1741-3737.2012.01013.x
- Hamaker, E. L., Kuiper, R. M., & Grasman, R. P. (2015). A critique of the cross-lagged panel model. Psychological Methods, 20, 102. doi:10.1037/a0038889
- Hausman, J. A. (1978). Specification tests in econometrics. Econometrica: Journal of the Econometric Society, 1251–1271. Retrieved from http://hdl.handle.net/1721.1/64309
- Hertzog, C., & Nesselroade, J. R. (2003). Assessing psychological change in adulthood: An overview of methodological issues. Psychology and Aging, 18, 639. doi:10.1037/0882-7974.18.4.639
- Hoffman, L. (2015). Longitudinal analysis: Modeling within-person fluctuation and change. New York, NY: Routledge.
10.4324/9781315744094 Google Scholar
- Hoffman, L., & Stawski, R. S. (2009). Persons as contexts: Evaluating between-person and within-person effects in longitudinal analysis. Research in Human Development, 6, 97–120. doi:10.1080/15427600902911189
- Hox, J. (2010). Multilevel analysis: Techniques and applications. London, UK: Routledge.
10.4324/9780203852279 Google Scholar
- Jöreskog, K. G. (1973). A general method for estimating a linear structural equation system. In A. S. Goldberger & O. D. Duncan (Eds.), Structural equation models in the social sciences (pp. 85–112). New York, NY: Seminar Press.
- Kenny, D. A. (1973). Cross-lagged and synchronous common factors in panel data. In A. S. Goldberger & O. D. Duncan (Eds.), Structural equation models in the social sciences (pp. 153–167). New York, NY: Seminar Press.
- Kenny, D. A., & Harackiewicz, J. M. (1979). Cross-lagged panel correlation: Practice and promise. Journal of Applied Psychology, 64, 372. doi:10.1037/0021-9010.64.4.372
- Kenny, D. A., & Zautra, A. (2001). Trait–state models for longitudinal data. In L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 243–263). Washington, DC, US: American Psychological Association. doi: http://dx.doi.org/10.1037/10409-008
- Lansford, J. E., Criss, M. M., Laird, R. D., Shaw, D. S., Pettit, G. S., Bates, J. E., & Dodge, K. A. (2011). Reciprocal relations between parents’ physical discipline and children's externalizing behavior during middle childhood and adolescence. Development and Psychopathology, 23, 225–238. doi:10.1017/S0954579410000751
- Lee, S. J., Altschul, I., & Gershoff, E. T. (2013). Does warmth moderate longitudinal associations between maternal spanking and child aggression in early childhood? Developmental Psychology, 49, 2017–2028. doi:10.1037/a0031630
- McArdle, J. J. (2001). A latent difference score approach to longitudinal dynamic structural analysis. In R. Cudeck, S. H. C. Toit, & D. Sörbom (Eds.), Structural equation modeling: Present and future (pp. 342–380). Lincolnwood, IL: Scientific Software International.
- Molenaar, P. C. (2003). State space techniques in structural equation modeling: Transformation of latent variables in and out of latent variable models. Retrieved from http://www.hhdev.psu.edu/hdfs/faculty/molenaar.html
- Molenaar, P. C. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever. Measurement, 2, 201–218. doi:10.1207/s15366359mea0204_1
10.1207/s15366359mea0204_1 Google Scholar
- Molenaar, P., & Newell, K. M. (2010). Individual pathways of change: Statistical models for analyzing learning and development. Washington, DC: American Psychological Association.
10.1037/12140-000 Google Scholar
- Muthén, B. O., & Curran, P. J. (1997). General longitudinal modeling of individual differences in experimental designs: A latent variable framework for analysis and power estimation. Psychological Methods, 2, 371. doi:10.1037/1082-989X.2.4.371
- Muthén, L. K., & Muthén, B. O. (2015). Mplus. Statistical Analysis with Latent Variables: User's Guide. Los Angeles: Muthén & Muthén.
- Reichman, N. E., Teitler, J. O., Garfinkel, I., & McLanahan, S. S. (2001). Fragile families: Sample and design. Children and Youth Services Review, 23, 303–326. doi:10.1016/S0190-7409(01)00141-4
- Robinson, W. S. (2009). Ecological correlations and the behavior of individuals. International Journal of Epidemiology, 38, 337–341. doi:10.1093/ije/dyn357
- Rogosa, D. (1980). A critique of cross-lagged correlation. Psychological Bulletin, 88, 245. doi:10.1037/0033-2909.88.2.245
- Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. New York, NY: Oxford University Press.
- Snijders, T. A., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and advanced multilevel modeling ( 2nd ed.). London, UK: Sage.
- Strassberg, Z., Dodge, K. A., Pettit, G. S., & Bates, J. E. (1994). Spanking in the home and children's subsequent aggression toward kindergarten peers. Development and Psychopathology, 6, 445–461. doi:10.1017/S0954579400006040
- Vernon-Feagans, L., Cox, M.; the FLP Key Investigators. (2013). The Family Life Project: An epidemiological and developmental study of young children living in poor rural communities. Monographs of the Society for Research in Child Development, 78(Serial No. 5), 1–150. doi:10.1111/mono.12046
- Voelkle, M. C. (2008). Reconsidering the use of autoregressive latent trajectory (ALT) models. Multivariate Behavioral Research, 43, 564–591. doi:10.1080/00273170802490665
- Voelkle, M. C., Brose, A., Schmiedek, F., & Lindenberger, U. (2014). Toward a unified framework for the study of between-person and within-person structures: Building a bridge between two research paradigms. Multivariate Behavioral Research, 49, 193–213. doi:10.1080/00273171.2014.889593
- Willett, J. B. (1989). Some results on reliability for the longitudinal measurement of change: Implications for the design of studies of individual growth. Educational and Psychological Measurement, 49, 587–602. doi:10.1177/001316448904900309
- Willett, J. B., & Sayer, A. G. (1994). Using covariance structure analysis to detect correlates and predictors of individual change over time. Psychological Bulletin, 116, 363. doi:10.1037/0033-2909.116.2.363
- Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. Cambridge, MA: MIT Press.